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Abstract
The electronic structure and residual resistivity of diluted (Ga, Mn)As magnetic
semiconductors are calculated from first principles using the linear muffin-
tin orbital method, the coherent potential approximation, and the Kubo–
Greenwood linear response theory. Particular attention is paid to the role
of native compensating defects such as As antisites and Mn interstitials as
well as to different magnetic configurations of the local Mn moments. The
order of magnitude of the calculated resistivities compares reasonably well
with available experimental data. The concentration variations of the resistivity
reflect two basic mechanisms, namely the strength of the impurity scattering and
the number of carriers. In agreement with a recent experiment, the calculated
resistivities are strongly correlated with the alloy Curie temperatures evaluated
in terms of a classical Heisenberg Hamiltonian.

1. Introduction

The p-type diluted magnetic semiconductors (DMSs) have recently attracted interest because
of the appearance of a ferromagnetic order of the impurity local magnetic moments mediated
by holes in the valence band of the parent semiconductor [1–3]. Applications in spintronics
require DMSs with Curie temperatures above room temperature, which has stimulated a lot of
research effort focused on the origin of the ferromagnetic exchange interactions and on the role
of structural defects in these materials [4, 5]. The III–V DMSs, such as Mn doped GaAs, GaN,
and InAs with Mn atoms substituting for the cations, represent the most frequently studied
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systems of this class [1]; existing theoretical studies include first-principles calculations of the
exchange interactions and the Curie temperatures [6–9]. The theoretical studies of transport
properties of these systems, on the other hand, remain confined to a model level [10, 11]. It
has been shown in a recent experiment [12] that controlled annealing of thin (Ga, Mn)As films
accompanied by monitoring of the resistivity during growth can lead to high Curie temperatures
of the films. Moreover, a pronounced correlation between the Curie temperatures and the
conductivities of the real samples has been reported [12].

Motivated by these findings, we present here results of systematic first-principles
calculations of the residual resistivity of (Ga, Mn)As alloys. Particular attention is paid to the
influence of various kinds of compensating defects on this basic zero-temperature transport
property that reflects processes of electron scattering on randomly placed impurities. Besides
looking at the effect of As antisite atoms (As atoms occupying the cation sublattice) [4],we have
investigated the effect of Mn interstitials (Mn atoms occupying the interstitial positions of the
zinc-blende structure) [13]; both defects act as double donors, thus reducing the number of the
valence holes considerably. Since recent theoretical studies indicate that magnetic structures
with partial disorder of local Mn magnetic moments can lower the total energy of the system
as compared to that for the ferromagnetic state [5], we have included the magnetic disorder
in our models. Similarly, we have calculated the resistivity for different orientations of the
Mn magnetic moments on the substitutional and interstitial positions. Finally, we estimate the
alloy Curie temperatures and present their correlation with the calculated conductivities.

2. Models, formalism, and numerical details

The systems studied were derived from Mn doped GaAs (zinc-blende structure) with a fixed
lattice constant equal to that of pure GaAs (a = 0.5653 nm). The alloys without structural
defects are described as (Ga1−x Mnx)As, where x denotes the concentration of Mn atoms
substituting randomly for Ga atoms on the cation sublattice. Alloys with As antisites are
simulated as (Ga1−x−y MnxAsy)As, where y denotes the As antisite content. For inclusion
of the magnetic disorder, pseudoquaternary alloys on the cation sublattice were introduced
with a formula (Ga1−x−y Mn+

x−cMn−
c Asy)As, where c is an auxiliary concentration variable

(0 � c � x) which specifies the content of Mn atoms with local moments oriented oppositely to
the rest of the Mn moments [5, 7]. The value c = 0 describes the ferromagnetic (FM) state while
the case 0 < c < x corresponds to a disordered local moment (DLM) state. The alloys with
both substitutional and interstitial Mn atoms are described as (Ga1−x+zMnx−z )AsMni

z where
x denotes the total content of Mn atoms while z (0 � z � x) is the content of Mn interstitials.
The latter were placed randomly in tetrahedral hollow sites surrounded by four anions [13] and
two orientations of the interstitial Mn moments with respect to the substitutional Mn moments
were considered: a FM state and an antiferromagnetic (AFM) state.

The self-consistent electronic structure calculations within the local spin-density
approximation (LSDA) [14] were performed using the all-electron scalar-relativistic
tight-binding linear muffin-tin orbital (TB-LMTO) method in the atomic-sphere
approximation [15, 16]. We employ empty spheres in tetrahedral interstitial positions of
the zinc-blende lattice to achieve a good space filling and use equal Wigner–Seitz radii for
all atoms and empty spheres. The valence basis comprised s-, p-, and d-type orbitals, the
local exchange–correlation potential was parametrized according to [17], the substitutional
randomness as well as the DLM state were treated in the coherent potential approximation
(CPA) [16, 18], and the Brillouin-zone (BZ) integrals were evaluated using 1638 k-points in
the irreducible wedge of the fcc BZ.
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The residual resistivity ρ was evaluated using the Kubo–Greenwood linear response theory
for substitutionally disordered systems as

ρ = σ−1, σ = σµµ,↑ + σµµ,↓, (1)

where the conductivity σ is equal to the sum over two spin channels s (s = ↑,↓) of diagonal
elements σµµ,s (σ xx,s = σ yy,s = σ zz,s ) of the spin-dependent conductivity tensor σµν,s . We
use a formulation for σµν,s based on the intersite (interatomic) electron transport [19] which
leads to

σµν,s = − e2

π h̄V0 N
Tr

〈
Im gs(E+

F)Dµ Im gs(E+
F)Dν

〉
, (2)

where µ, ν = x, y, z are the Euclidean indices, V0 is the volume of the primitive cell, N is the
number of cells in a large but finite solid with three-dimensional periodic boundary conditions,
and 〈· · ·〉 denotes the configurational averaging. The trace in (2) extends over the site index
R and the angular momentum index L = (�, m), the quantities gs(z) and Dµ are matrices in
the RL-index, Im M = (M − M+)/(2i) denotes the anti-Hermitian part of a matrix M , and
E+

F = EF + i0 where EF is the system Fermi energy. The matrix gs(z) = {gs
RL ,R′L ′(z)} denotes

the so-called auxiliary Green function while the matrix Dµ represents an effective velocity
operator defined as

Dµ = XµS − SXµ, (3)

where S = {SRL ,R′ L ′ } is the matrix of structure constants of the TB-LMTO method and Xµ is
a position operator. The latter is expressed in a particularly simple manner, namely as

Xµ

RL ,R′ L ′ = Xµ

RδRL ,R′ L ′ , (4)

where Xµ

R denotes the µth component of the vector R [19]. The configurational average in (2)
can be reduced to four averages of the form [18]

Tr
〈
gs(z)Dµgs(z ′)Dν

〉 = Tr
[
ḡs(z)Dµ ḡs(z ′)Dν

]
+ ξµν,s (z, z′), (5)

where the energy arguments z, z′ acquire two values E+
F and E−

F = EF−i0, and ḡs(z) = 〈gs(z)〉
denotes the configurationally averaged Green-function matrix. The first term in (5) is the
coherent part while the second term includes the corresponding vertex corrections. Since the
velocity operators Dµ are non-random quantities, the vertex corrections can be formulated in
a standard way [20]. The result is

ξµν,s(z, z′) =
∑

R1�1

∑

R2�2

{
ḡs(z ′)Dν ḡs(z)

}
R1 L ′

1,R1 L1

× {
[1 − ws(z, z′)χ s(z, z′)]−1ws(z, z′)

}
R1�1,R2�2

× {
ḡs(z)Dµ ḡs(z ′)

}
R2 L2,R2 L ′

2
, (6)

where �1 = (L1, L ′
1), �2 = (L2, L ′

2) are composite indices and the matrix quantities ws(z, z′)
and χ s(z, z′) are defined as

ws
R1�1,R2�2

(z, z′) = δR1R2

∑

Q

cQ
R1

t Q,s
R1;L1 L2

(z)t Q,s
R1;L ′

2 L ′
1
(z ′),

χ s
R1�1,R2�2

(z, z′) = (
1 − δR1R2

)
ḡs

R1 L1,R2 L2
(z)ḡs

R2 L ′
2,R1 L ′

1
(z ′),

(7)

where Q runs over the atomic species occupying the lattice sites R with concentrations cQ
R

and t Q,s
R;L L ′(z) denotes the single-site t-matrix resulting from embedding a single Q-impurity

into the effective CPA medium [16]. As a consequence of the very simple form of the position
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Figure 1. (a) The residual resistivity of disordered fcc Ag–Pd alloys calculated by the present
TB-LMTO approach: from the coherent part of the conductivity (open squares) and from the total
conductivity including the vertex corrections (full squares). The dotted curve denotes experimental
results [21]. (b) The residual resistivity of the (Ga1−x−yMnx Asy)As alloy as a function of the
Mn content: without As antisites (y = 0, squares) and with 1% As antisites (y = 0.01, triangles).
The open and full symbols relate to the coherent and the total conductivities, respectively.

operator (4), the on-site elements in (6) vanish identically for z = z′ ({ḡs(z)Dµ ḡs(z)}RL ,RL ′ =
0), so ξµν,s(z, z) = 0 and the conductivity tensor (2) can be expressed as

σµν,s =− e2

π h̄V0 N

{
Tr

[
Im ḡs(E+

F)Dµ Im ḡs(E+
F)Dν

]
+ 1

4

[
ξµν,s(E+

F , E−
F ) + ξµν,s(E−

F , E+
F)

]}
.

(8)

Its evaluation employs the lattice Fourier transforms of all matrix quantities [19]. The
corresponding BZ averages were calculated using 7 × 106 k-points in the full fcc BZ.

The scheme developed has been tested for random fcc AgPd alloys. The results for the
coherent part of the conductivity (first term in (8)) have been discussed in detail in [19]; the
role of the vertex corrections is shown in figure 1(a). It is seen that the vertex corrections are
negligible for Pd-rich alloys while their effect for the Ag-rich alloys is about 30%, in excellent
quantitative agreement with a previous study using the Korringa–Kohn–Rostokermethod [22].

3. Results and discussion

3.1. Residual resistivities

Since the electronic structure of the alloys studied (without Mn interstitials) has been discussed
elsewhere [9], we will focus here on the residual resistivities. Their calculated values for a
typical Mn content of 5% lie in the range 1–5×10−5 
 m (see below), in good agreement with
experiment [1, 12]. The dependence of ρ on the Mn content x for two different concentrations
y of As antisites is shown in figure 1(b). The vertex part of the conductivity is very small,
similarly to the Pd-rich case for AgPd alloys. However, we observe a decrease of the resistivity
with the concentration of Mn impurities, which is just the opposite dependence to that known
for metallic alloys. The reason for such behaviour is a competition of two trends in the DMSs:
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Figure 2. The residual resistivity of (Ga, Mn)As alloys with native structural defects: (a) as
a function of the As antisite concentration y in the (Ga0.95−yMn0.05Asy)As alloy for the
ferromagnetic state (FM, full circles) and for a disordered local moment state (DLM, open triangles);
(b) as a function of the Mn interstitial concentration z in the (Ga0.95+zMn0.05−z)AsMni

z alloy for
the antiferromagnetic (AFM, open squares) and ferromagnetic (FM, full diamonds) alignment of
magnetic moments on the substitutional and interstitial Mn atoms.

(i) the increase of ρ with increasing concentration of defects which is due to impurity
scatterings, and

(ii) the increase of the conductivity, i.e., the decrease of ρ, with increasing number of carriers
which is in turn proportional to the concentration of Mn atoms.

The dependence on the number of carriers (valence holes) is particularly pronounced for
Mn concentrations close to the compensated case, e.g., for x → 0.02 at y = 0.01. Such a
strong dependence on the number of carriers is lacking in typical metallic alloys with a large
number of carriers at the Fermi energy only weakly depending on the alloy composition. It
should be noted that for the case without As antisites we have a completely filled minority
valence band (half-metallic behaviour), so σ↓ = 0, and the current is carried only by majority
electrons, ρ = 1/σ↑.

The effect of native compensating defects on ρ for (Ga, Mn)As alloys with 5% Mn is
summarized in figure 2. The resistivity monotonically increases with the As antisite content
y and it diverges in the fully compensated case (y → 0.025); see figure 2(a). While this
looks like a conventional metallic behaviour, the dominating effect is again the reduction of
the number of carriers with increasing y. We have found that for y > 0.0115 the magnetic
ground state is a DLM state rather than the FM state [7] (see also [5]). The resistivity of the
FM state is smaller as compared to the DLM state because the magnetic disorder leads to an
additional scattering resulting in an increased ρ (the numbers of carriers are the same in the
two cases).

The effect of Mn interstitials on ρ is illustrated in figure 2(b) for both FM and AFM
states; we have found that the AFM state has a lower energy than the FM state. The resistivity
increases with the Mn interstitial content z for both states; however, the two dependences
differ from each other. In particular, the resistivity in the AFM case quickly increases if we
approach the fully compensated state (z → 0.0166 . . .). In contrast, the resistivity for the
FM state increases with z nearly linearly over the whole concentration range studied. One
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Figure 3. Spin-resolved total densities of states (full curves) and local Mn densities of
states on substitutional (Mn, dashed curves) and interstitial (Mni, dotted curves) atoms for
the (Ga0.95+zMn0.05−z)AsMni

z alloy at the compensated composition (z = 0.0166 . . .) with
antiferromagnetic (a) and ferromagnetic (b) alignment of the substitutional and interstitial
Mn moments. The energy zero coincides with the Fermi level.

can understand such a difference from the corresponding densities of states shown in figure 3
for z close to the compensation limit. The AFM state exhibits a conventional half-metallic
behaviour with EF in the gap of the minority states, so the conductivity is due to the majority
carriers only. The large resistivity is due to the Fermi level lying in the energy region of
strongly disordered Mn interstitial states formed in the majority band gap; see figure 3(a). In
contrast, EF for the FM case lies in the minority conduction band—see figure 3(b)—and both
majority and minority carriers contribute to the conductivity, so the resistivity is smaller as
compared to the AFM case. It should be noted that the densities of states for the FM state are
in a good agreement with results of full-potential supercell calculations [13].

3.2. Correlation between conductivities and Curie temperatures

The first-principles zero-temperature electronic structure calculations represent a suitable
starting point for studying the exchange interactions between the local Mn moments in
the framework of an effective classical Heisenberg Hamiltonian [7, 9]. The pair exchange
interactions are obtained from a mapping of changes of total energy due to infinitesimal changes
of direction of the local moments. In the present study, we have employed the derived pair
interactions in a simple quantitative estimation of the Curie temperatures using a mean-field
approximation; see [7, 9] for details. Figure 4 shows the experimentally observed correlation
between the conductivity (measured at 4.2 K) and the Curie temperature for thin (Ga, Mn)As
films with 5% Mn, and the theoretical correlation calculated for (Ga0.95−yMn0.05Asy)As alloys
(0 � y < 0.025) with the DLM ground state for y > 0.0115. Considering the different
systems in the experiment (thin films) and the calculations (bulk alloys), the semiquantitative
agreement obtained is quite satisfactory. These results witness that both quantities reflect
mainly the degree of compensation (number of holes) in the DMSs studied.
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Figure 4. The Curie temperatures versus the residual conductivities as calculated for
(Ga0.95−yMn0.05Asy)As alloys with varying As antisite content y (full dots) and the experimental
values obtained for as-grown and annealed Ga0.95Mn0.05As thin films [12] (open squares).

4. Conclusions

The main results of our systematic LSDA-CPA study of the residual resistivity of p-type (Ga,
Mn)As alloys can be summarized as follows:

(i) the order of magnitude of the calculated resistivities agrees reasonably well with
experimental data;

(ii) the concentration trends of the resistivity reflect the strength of the impurity scattering and
the number of carriers (holes in the valence band);

(iii) the resistivity decreases as a function of the Mn concentration but it increases with
increasing content of native compensating defects (As antisites, Mn interstitials);

(iv) the resistivity of the ferromagnetic state is smaller than that of more complicated spin
arrangements (disordered local moments, antiferromagnetic state);

(v) the conductivities and the Curie temperatures are strongly correlated, in agreement with
experiment;

(vi) the vertex corrections to the conductivity are weak in the systems studied.
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